19 research outputs found

    Optimal General Matchings

    Full text link
    Given a graph G=(V,E)G=(V,E) and for each vertex v∈Vv \in V a subset B(v)B(v) of the set {0,1,
,dG(v)}\{0,1,\ldots, d_G(v)\}, where dG(v)d_G(v) denotes the degree of vertex vv in the graph GG, a BB-factor of GG is any set F⊆EF \subseteq E such that dF(v)∈B(v)d_F(v) \in B(v) for each vertex vv, where dF(v)d_F(v) denotes the number of edges of FF incident to vv. The general factor problem asks the existence of a BB-factor in a given graph. A set B(v)B(v) is said to have a {\em gap of length} pp if there exists a natural number k∈B(v)k \in B(v) such that k+1,
,k+p∉B(v)k+1, \ldots, k+p \notin B(v) and k+p+1∈B(v)k+p+1 \in B(v). Without any restrictions the general factor problem is NP-complete. However, if no set B(v)B(v) contains a gap of length greater than 11, then the problem can be solved in polynomial time and Cornuejols \cite{Cor} presented an algorithm for finding a BB-factor, if it exists. In this paper we consider a weighted version of the general factor problem, in which each edge has a nonnegative weight and we are interested in finding a BB-factor of maximum (or minimum) weight. In particular, this version comprises the minimum/maximum cardinality variant of the general factor problem, where we want to find a BB-factor having a minimum/maximum number of edges. We present an algorithm for the maximum/minimum weight BB-factor for the case when no set B(v)B(v) contains a gap of length greater than 11. This also yields the first polynomial time algorithm for the maximum/minimum cardinality BB-factor for this case

    A Comparison between the Zero Forcing Number and the Strong Metric Dimension of Graphs

    Full text link
    The \emph{zero forcing number}, Z(G)Z(G), of a graph GG is the minimum cardinality of a set SS of black vertices (whereas vertices in V(G)−SV(G)-S are colored white) such that V(G)V(G) is turned black after finitely many applications of "the color-change rule": a white vertex is converted black if it is the only white neighbor of a black vertex. The \emph{strong metric dimension}, sdim(G)sdim(G), of a graph GG is the minimum among cardinalities of all strong resolving sets: W⊆V(G)W \subseteq V(G) is a \emph{strong resolving set} of GG if for any u,v∈V(G)u, v \in V(G), there exists an x∈Wx \in W such that either uu lies on an x−vx-v geodesic or vv lies on an x−ux-u geodesic. In this paper, we prove that Z(G)≀sdim(G)+3r(G)Z(G) \le sdim(G)+3r(G) for a connected graph GG, where r(G)r(G) is the cycle rank of GG. Further, we prove the sharp bound Z(G)≀sdim(G)Z(G) \leq sdim(G) when GG is a tree or a unicyclic graph, and we characterize trees TT attaining Z(T)=sdim(T)Z(T)=sdim(T). It is easy to see that sdim(T+e)−sdim(T)sdim(T+e)-sdim(T) can be arbitrarily large for a tree TT; we prove that sdim(T+e)≄sdim(T)−2sdim(T+e) \ge sdim(T)-2 and show that the bound is sharp.Comment: 8 pages, 5 figure

    Approximation hardness of Travelling Salesman via weighted amplifiers

    Get PDF
    The expander graph constructions and their variants are the main tool used in gap preserving reductions to prove approximation lower bounds of combinatorial optimisation problems. In this paper we introduce the weighted amplifiers and weighted low occurrence of Constraint Satisfaction problems as intermediate steps in the NP-hard gap reductions. Allowing the weights in intermediate problems is rather natural for the edge-weighted problems as Travelling Salesman or Steiner Tree. We demonstrate the technique for Travelling Salesman and use the parametrised weighted amplifiers in the gap reductions to allow more flexibility in fine-tuning their expanding parameters. The purpose of this paper is to point out effectiveness of these ideas, rather than to optimise the expander’s parameters. Nevertheless, we show that already slight improvement of known expander values modestly improve the current best approximation hardness value for TSP from 123/122 ([9]) to 117/116 . This provides a new motivation for study of expanding properties of random graphs in order to improve approximation lower bounds of TSP and other edge-weighted optimisation problems

    Approximation algorithms for general cluster routing problem

    Get PDF
    Graph routing problems have been investigated extensively in operations research, computer science and engineering due to their ubiquity and vast applications. In this paper, we study constant approximation algorithms for some variations of the general cluster routing problem. In this problem, we are given an edge-weighted complete undirected graph G=(V,E,c),G=(V,E,c), whose vertex set is partitioned into clusters C1,
,Ck.C_{1},\dots ,C_{k}. We are also given a subset Vâ€ČV' of VV and a subset Eâ€ČE' of E.E. The weight function cc satisfies the triangle inequality. The goal is to find a minimum cost walk TT that visits each vertex in Vâ€ČV' only once, traverses every edge in Eâ€ČE' at least once and for every i∈[k]i\in [k] all vertices of CiC_i are traversed consecutively.Comment: In COCOON 202

    Beating the Integrality Ratio for ss-tt-Tours in Graphs

    No full text

    On Integer Multiflows and Metric Packings in Matroids

    No full text
    7> ! R+ is a metric if m(e) m(C \Gamma feg) for all circuits C of M and all elements e of C. \Delta is a family of metrics if for every binary matroid M , \Delta(M ) is a set of metrics defined on E(M ). We shall consider the family \Delta A = \Delta A (M) of metrics m : E(M) ! A. A metric m is bipartite if m(C) is even for all circuits C of M . The extreme rays of cone (\Delta A (M)) are called primitive. Let \Delta be a family of metrics, and<F2

    On the Local Metric Dimension of Corona Product Graphs

    No full text
    corecore